

Catastrophe Model Workflow and its Applications

Catastrophe Insights 2018

Agenda

- Section 1 Overview of Process/Workflow
- Section 2 Inputs Required for Catastrophe Modelling
- Section 3 Catastrophe Model Outputs
- Section 4 Using Model Outputs for Reinsurance

Section 1: Overview of Process/Workflow

Process/Workflow

Section 2: Inputs Required for Catastrophe Modelling

Data Requirements for a Catastrophe Modelling Analysis

		Required	Recommended
1. Location Information	on		
Country	ex. Thailand	X	
Location Resolution	ex. Street Address, District, Province	X	
2. Building Information	on		
Occupancy	ex. Residential, Commercial, Industrial, Engineering	X	
Construction	ex. Masonry, Reinforced Concrete, Wood Frame		X
Building Height	ex. Number of Storeys		X
Year Built	ex. 1995, 2010		X
Secondary Modifiers	ex. Year upgrade, soft storey, etc		X
3. Policy Information			
Coverage Value	ex. Building, contents, business interruption	X	
Sublimit	ex. Site limit, policy limit, peril specific limit		X
Deductible	ex. Site, policy, coverage (% TSI, % loss, BI waiting period)		x

Inputs needed

- Catastrophe models require three basic types of data:
 - Exposure location (the more accurate = the less uncertain simulation)
 - Street address converted to latitude & longitude coordinates (same as GPS is using)
 - Higher units (Tambons, Ampohes, Postal codes, Changwats,...)
 - Exposure Value
 - Sums insured (Total insured values)
 - Other policy conditions (limits, deductibles, reinsurance levels,...)
 - Policy characteristics:
 - Coverage: Building | Content | Business interruption
 - Lines of business: Residential, Commercial, Industrial, Agriculture
 - Other modifiers: Basements, construction class, no. of stories, ...
- Aggregated values summarized per larger unit (loss of information)
- Per policy data each (sub)policy described individually

Highly preferred approach!!!

Importance of Location Information

outcomes can be achieved

Sample Data: Inputs needed

Example of catastrophe model input file

(format would depend on size of file)

Ac	ldress	Subdistrict	District	Lat.	Long.	Stories	Basement	LoB	Type of Item	Actual S/I	SI Ret	siπ	SI FAC	SI QS	Flood Sublimit	SL Ret
เลขที่	35/151 หมุ	BANG LEN,	A.BANGYAI,	13.86072	100.43733	2	0	R	Building	590,000	531,000	47,200	-	11,800	20,000	19,600
เลขที่	3 ลาดพร้า	CHOMPOL,	СНАТИСНАК,	13.80848	100.56574	2	1	R	Building	4,000,000	3,600,000	320,000	-	80,000	20,000	19,600
เลขที่	9/615 หมู่1	КНОК FAET,	NONGJOK,	13.83515	100.82802	2	1	R	Building	218,000	196,200	17,440	-	4,360	20,000	19,600
เลขที่	717/4 สี่	SIPRAYA,	BANGRAK,	13.729408	100.523206	0	0	С	Furniture	720,000	648,000	57,600	-	14,400	20,000	19,600
เลขที่	62/55 9	BANGPLEE-YAI,	BANGPHLI,	13.616282	100.69886	0	0	I	Building	700,000	630,000	56,000	-	14,000	20,000	19,600
เลขที่	19/6 (ລ.48	SIPRAYA,	BANGRAK,	13.77354	100.34224	2	0	R	Building	1,170,000	1,053,000	93,600	-	23,400	20,000	19,600
		DINDAENG,	DINDANG,	-	-	0	0	С	Building	362,033,352	241,355,569	-	120,677,783	-	15,000,000	10,000,000
เลขที่	35/10 หมู่1	LADSAWAI,	A.LAMLUKKA,	13.95399	100.68677	2	0	I	Building	1,110,000	999,000	88,800	-	22,200	20,000	19,600

Section 3: Catastrophe Model Outputs

Proprietary & Confidential

The Catastrophe Modelling Process (Recap)

Model Outputs: Exceedance Probability (EP)

		THB Million	140	1				
Return Period	Net Loss OEP	Net Loss AEP	ू 120 ह	OEP				
1,000	124.7	130.1		AEP				
500	96.6	100.2	8 E					
250	79.7	81.9	_ 80 ل د		-			
200	74.8	76.7	8 8 60					
100	58.6	59.9	ed L					
50	35.6	36.6	llap 40 ·					
20	10.6	11.0	ĕ 20 -					
AAL	2.4	2.4		/				
Std Dev	11.3	11.3	-		400	COO	800	1 000
			-	- 200	400 Return	Period	800	1,000

An **Exceedance Probability (EP)** curve is a cumulative probability distribution, showing the likelihood of various return period loss amounts being equalled or exceeded

- Occurrence Exceedance Probability (OEP) Curve shows the annual probability that the losses for at least one occurrence will exceed a certain amount
- Aggregate Exceedance Probability (AEP) Curve shows the probability that aggregate losses in a year (i.e. the sum of all losses from all occurrences in a year) will be greater than a certain amount

Exceedance Probability (EP)

- Stop loss treaties
 - Reinstatements

Assessing single event covers

based contracts

٠

Model Output: Annual Average Loss (AAL)

	THB millions			
Return Period	Net Loss			
1,000	9.9			
500	7.5			
250	4.2			
200	3.4			
100	1.8			
50	0.8			
20	0.2			
AAL	0.1			
Std Dev	0.6			

The **Annual Average Loss (AAL),** also referred to as the Pure Premium or Burning Cost, is an estimate of the annual premium needed to cover losses from a modelled peril

• Fundamental for pricing decisions and rating determinations

Section 4: Using Model outputs for Reinsurance

Reinsurance Catastrophe Considerations

Capital Model	Return Period / Peril	Basis
Australia	Greater of:	
	Natural Perils Vertical Requirement (NP VR) #	NP VR & OA VR - Occurrence
	Natural Perils Horizontal Requirement (NP HR) # Other Accumulations Vertical Requirement (OA VR)	NP HR - Aggregate
Bermuda	1:100 TVaR - All Perils	Aggregate
Canada	1:370 - Earthquake	Occurrence
Indonesia	Retention for a 1/250 year cat event	
Japan	Greater of:	
	Return of Kanto equivalent earthquake* Return of equivalent typhoon as Isewan Typhoon*	Occurrence
Lloyd's	RDS an 1-in-200 year all risk estimate within the ICA	Aggregate
New Zealand	Greater of:	Occurrence
	1:1000 – Earthquake	
	1:250 – Non earthquake	
Philippines	Min Cat XOL Reins: equivalent to 5% of aggregate net retained	
	insured values against Earthquake, Typhoon and Flood under Zone A	
	or Zone B whichever is higher	
Solvency I	None	N/A
Solvency II	1:200 - All Perils	Aggregate
Taiwan	Greater of:	
	1:250 – Earthquake	
117	I.100 - Wind	
U.K.	However ICA includes a 1-in-200 year all risk estimate	Aggregate
U.S.	100yr HU & 100yr EQ	Aggregate
A.M. Best BCAR	Greater of:	Qoourroppo
	1:200 – Eartiquake 1:100 – Wind	occurrence
CHD CAD	1.100 - Willia	A
S&P CAR	1:250 - All Perils	Aggregate

NP VR: 1 in 200 year return period loss after allowing for all classes of business, non-modelled perils and potential growth in the insurer's portfolio # NP HR: Three '1 in 10 year' losses or four '1 in 6 year' losses less an allowance for the net premium liability provision which relates to catastrophic losses * In practice usually modelled as 1:200 earthquake and 1:70 typhoon respectively

From Ground Up Cover – Exhaustion Return Period

The graph below shows the return period of exhaustion of 5 companies in a territory and the average.

Disclaimer

Legal Disclaimer

© Aon UK Limited trading as Aon Benfield (for itself and on behalf of each subsidiary company of Aon Plc) ("Aon Benfield") reserves all rights to the content of this report or document ("Report"). This Report is for distribution to Aon Benfield and the organisation to which it was originally delivered by Aon Benfield only (the "Recipient"). Copies may be made by that organisation for its own internal purposes but this Report may not be distributed in whole or in part to any third party without both (i) the prior written consent of Aon Benfield and (ii) the third party having first signed a "recipient of report" letter in a form acceptable to Aon Benfield. This Report is provided as a courtesy to the recipient and for general information and marketing purposes only. The Report should not be construed as giving opinions, assessment of risks or advice of any kind (including but not limited to actuarial, re/insurance, tax, regulatory or legal advice). The content of this Report is made available without warranty of any kind and without any other assurance whatsoever as to its completeness or accuracy.

Aon Benfield does not accept any liability to any Recipient or third party as a result of any reliance placed by such party on this Report. Any decision to rely on the contents of this Report is entirely the responsibility of the Recipient. The Recipient acknowledges that this Report does not replace the need for the Recipient to undertake its own assessment or seek independent and/or specialist risk assessment and/or other relevant advice.

The contents of this Report are based on publically available information and/or third party sources (the "Data") in respect of which Aon Benfield has no control and such information has not been verified by Aon Benfield. This Data may have been subjected to mathematical and/or empirical analysis and modelling in producing the Report. The Recipient acknowledges that any form of mathematical and/or empirical analysis and modelling (including that used in the preparation of this Report) may produce results which differ from actual events or losses.

Limitations of Catastrophe Models

This report includes information that is output from catastrophe models of Impact Forecasting, LLC (IF). The information from the models is provided by Aon Benfield Services, Inc. (Aon Benfield) under the terms of its license agreements with IF. The results in this report from IF are the products of the exposures modelled, the financial assumptions made concerning deductibles and limits, and the risk models that project the pounds of damage that may be caused by defined catastrophe perils. Aon Benfield recommends that the results from these models in this report not be relied upon in isolation when making decisions that may affect the underwriting appetite, rate adequacy or solvency of the company. The IF models are based on scientific data, mathematical and empirical models, and the experience of engineering, geological and meteorological experts. Calibration of the models using actual loss experience is based on very sparse data, and material inaccuracies in these models are possible. The loss probabilities generated by the models are not predictive of future hurricanes, other windstorms, or earthquakes or other natural catastrophes, but provide estimates of the magnitude of losses that may occur in the event of such natural catastrophes. Aon Benfield makes no warranty about the accuracy of the IF models and has made no attempt to independently verify them. Aon Benfield will not be liable for any special, indirect or consequential damages, including, without limitation, losses or damages arising from or related to any use of or decisions based upon data developed using the models of IF.

Additional Limitations of Impact Forecasting, LLC

The results listed in this report are based on engineering / scientific analysis and data, information provided by the client, and mathematical and empirical models. The accuracy of the results depends on the uncertainty associated with each of these areas. In particular, as with any model, actual losses may differ from the results of simulations. It is only possible to provide plausible results based on complete and accurate information provided by the client and other reputable data sources. Furthermore, this information may only be used for the business application specified by Impact Forecasting, LLC and for no other purpose. It may not be used to support development of or calibration of a product or service offering that competes with Impact Forecasting, LLC. The information in this report may not be used as a part of or as a source for any insurance rate filing documentation.

THIS INFORMATION IS PROVIDED "AS IS" AND IMPACT FORECASTING, LLC HAS NOT MADE AND DOES NOT MAKE ANY WARRANTY OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, WITH RESPECT TO THIS REPORT; AND ALL WARRANTIES INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED BY IMPACT FORECASTING, LLC. IMPACT FORECASTING, LLC WILL NOT BE LIABLE TO ANYONE WITH RESPECT TO ANY DAMAGES, LOSS OR CLAIM WHATSOEVER, NO MATTER HOW OCCASIONED, IN CONNECTION WITH THE PREPARATION OR USE OF THIS REPORT.

